62 research outputs found

    Vesicular dysfunction and the pathogenesis of Parkinson's disease: clues from genetic studies

    Get PDF
    Parkinsonā€™s disease (PD) is a common age-related neurodegenerative disorder with disabling motor symptoms and no available disease modifying treatment. The majority of the PD cases are of unknown aetiology, with both genetics and environment playing important roles. Over the past 25 years, however, genetic analysis of patients with familial history of Parkinsonā€™s and, latterly, genome wide association studies (GWAS) have provided significant advances in our understanding of the causes of the disease. These genetic insights have uncovered pathways that are affected in both genetic and sporadic forms of PD. These pathways involve oxidative stress, abnormal protein homeostasis, mitochondrial dysfunction, and lysosomal defects. In addition, newly identified PD genes and GWAS nominated genes point towards synaptic changes involving vesicles. This review will highlight the genes that contribute PD risk relating to intracellular vesicle trafficking and their functional consequences. There is still much to investigate on this newly identified and converging pathway of vesicular dynamics and PD, which will aid in better understanding and suggest novel therapeutic strategies for PD patients

    Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology

    Get PDF
    LRRK2, the gene encoding the multidomain kinase Leucine-Rich Repeat Kinase 2 (LRRK2), has been linked to familial and sporadic forms of Parkinson's disease (PD), as well as cancer, leprosy and Crohn's disease, establishing it as a target for discovery therapeutics. LRRK2 has been associated with a range of cellular processes, however its physiological and pathological functions remain unclear. The most prevalent LRRK2 mutations in PD have been shown to affect macroautophagy in various cellular models while a role in autophagy signalling has been recapitulated in vivo. Dysregulation of autophagy has been implicated in PD pathology, and this raises the possibility that differential autophagic activity is relevant to disease progression in PD patients carrying LRRK2 mutations. To examine the relevance of LRRK2 to the regulation of macroautophagy in a disease setting we examined the levels of autophagic markers in the basal ganglia of G2019S LRRK2 PD post-mortem tissue, in comparison to pathology-matched idiopathic PD (iPD), using immunoblotting (IB). Significantly lower levels of p62 and LAMP1 were observed in G2019S LRRK2 PD compared to iPD cases. Similarly, an increase in ULK1 was observed in iPD but was not reflected in G2019S LRRK2 PD cases. Furthermore, examination of p62 by immunohistochemistry (IH) recapitulated a distinct signature for G2019S PD. IH of LAMP1, LC3 and ULK1 broadly correlated with the IB results. Our data from a small but pathologically well-characterized cases highlights a divergence of G2019S PD carriers in terms of autophagic response in alpha-synuclein pathology affected brain regions compared to iPD

    Differential LRRK2 signalling and gene expression in WT-LRRK2 and G2019S- LRRK2 mouse microglia treated with zymosan and MLi2

    Get PDF
    INTRODUCTION: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinsonā€™s disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. METHODS: Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. RESULTS: We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. DISCUSSION: Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis

    Inhibition of LRRK2 kinase activity stimulates macroautophagy

    Get PDF
    Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific target for disease modifying therapies in patients

    Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

    Get PDF
    Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morpholog

    Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration

    Get PDF
    Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of P

    SIAH proteins regulate the degradation and intraā€SIAH proteins regulate the degradation and intra-mitochondrial aggregation of PINK1: Implications for mitochondrial pathology in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of Ī±-synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin-ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with Ī±-synuclein preformed fibrils (Ī±-SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra-mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin-ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra-mitochondrial aggregation of SIAH3-PINK1 may mediate Ī±-synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease

    Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease

    Get PDF
    AbstractUnlike most other cell types, neurons preferentially metabolize glucose via the pentose phosphate pathway (PPP) to maintain their antioxidant status. Inhibiting the PPP in neuronal cell models causes cell death. In rodents, inhibition of this pathway causes selective dopaminergic cell death leading to motor deficits resembling parkinsonism. Using postmortem human brain tissue, we characterized glucose metabolism via the PPP in sporadic Parkinson's disease (PD), Alzheimer's disease (AD), and controls. AD brains showed increased nicotinamide adenine dinucleotide phosphate (NADPH) production in areas affected by disease. In PD however, increased NADPH production was only seen in the affected areas of late-stage cases. Quantifying PPP NADPH-producing enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase by enzyme-linked immunosorbent assay, showed a reduction in the putamen of early-stage PD and interestingly in the cerebellum of early and late-stage PD. Importantly, there was no decrease in enzyme levels in the cortex, putamen, or cerebellum of AD. Our results suggest that down-regulation of PPP enzymes and a failure to increase antioxidant reserve is an early event in the pathogenesis of sporadic PD
    • ā€¦
    corecore